Chromaticity of Bipartite Graphs with Five or Six Edges Deleted

نویسندگان

  • H. Roslan
  • Y. H. Peng
چکیده

For integers p, q, s with p ≥ q ≥ 2 and s ≥ 0, let K−s 2 (p, q) denote the set of 2−connected bipartite graphs which can be obtained from Kp,q by deleting a set of s edges. F.M.Dong et al. (Discrete Math. vol.224 (2000) 107–124) proved that for any graph G ∈ K−s 2 (p, q) with p ≥ q ≥ 3 and 0 ≤ s ≤ min{4, q−1}, then G is chromatically unique. In this paper, we shall extend this result to p ≥ q ≥ 6 and 5 ≤ s ≤ min{6, q − 1}. Mathematics Subject Classification: 05C15 1766 H. Roslan and Y. H. Peng

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromaticity of Turan Graphs with At Most Three Edges Deleted

Let $P(G,lambda)$ be the chromatic polynomial of a graph $G$. A graph $G$ ischromatically unique if for any graph $H$, $P(H, lambda) = P(G,lambda)$ implies $H$ is isomorphic to $G$. In this paper, we determine the chromaticity of all Tur'{a}n graphs with at most three edges deleted. As a by product, we found many families of chromatically unique graphs and chromatic equivalence classes of graph...

متن کامل

Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

Remainder Cordial Labeling of Graphs

In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...

متن کامل

The bipartite edge frustration of hierarchical product of graphs

The smallest number of edges that have to be deleted from a graph G to obtain a bipartite spanning subgraph is called the bipartite edge frustration of G and denoted by φ(G). In this paper our recent results on computing this quantity for hierarchical product of graphs are reported. We also present a fast algorithm for computing edge frustration index of (3, 6)−fullerene graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009